Copied to
clipboard

G = C3xC42:S3order 288 = 25·32

Direct product of C3 and C42:S3

direct product, non-abelian, soluble, monomial

Aliases: C3xC42:S3, (C4xC12):2S3, C42:C3:2C6, (C2xC6).1S4, C22.(C3xS4), C42:1(C3xS3), (C3xC42:C3):6C2, SmallGroup(288,397)

Series: Derived Chief Lower central Upper central

C1C42C42:C3 — C3xC42:S3
C1C22C42C42:C3C3xC42:C3 — C3xC42:S3
C42:C3 — C3xC42:S3
C1C3

Generators and relations for C3xC42:S3
 G = < a,b,c,d,e | a3=b4=c4=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=ebe=c, dcd-1=b-1c-1, ece=b, ede=d-1 >

Subgroups: 270 in 51 conjugacy classes, 10 normal (all characteristic)
Quotients: C1, C2, C3, S3, C6, C3xS3, S4, C3xS4, C42:S3, C3xC42:S3
3C2
12C2
16C3
32C3
3C4
3C4
6C22
6C4
3C6
12C6
16S3
16C32
3D4
3C2xC4
3Q8
6C2xC4
6C8
6D4
3C12
3C12
4A4
6C12
6C2xC6
8A4
16C3xS3
3M4(2)
3C4oD4
3C2xC12
3C3xD4
3C3xQ8
4S4
6C2xC12
6C24
6C3xD4
4C3xA4
3C4wrC2
2C42:C3
3C3xM4(2)
3C3xC4oD4
4C3xS4
3C3xC4wrC2

Character table of C3xC42:S3

 class 12A2B3A3B3C3D3E4A4B4C4D6A6B6C6D8A8B12A12B12C12D12E12F12G12H24A24B24C24D
 size 131211323232336123312121212333366121212121212
ρ1111111111111111111111111111111    trivial
ρ211-111111111-111-1-1-1-1111111-1-1-1-1-1-1    linear of order 2
ρ3111ζ32ζ3ζ32ζ311111ζ32ζ3ζ32ζ311ζ3ζ32ζ3ζ32ζ32ζ3ζ32ζ3ζ3ζ3ζ32ζ32    linear of order 3
ρ4111ζ3ζ32ζ3ζ3211111ζ3ζ32ζ3ζ3211ζ32ζ3ζ32ζ3ζ3ζ32ζ3ζ32ζ32ζ32ζ3ζ3    linear of order 3
ρ511-1ζ32ζ3ζ32ζ31111-1ζ32ζ3ζ6ζ65-1-1ζ3ζ32ζ3ζ32ζ32ζ3ζ6ζ65ζ65ζ65ζ6ζ6    linear of order 6
ρ611-1ζ3ζ32ζ3ζ321111-1ζ3ζ32ζ65ζ6-1-1ζ32ζ3ζ32ζ3ζ3ζ32ζ65ζ6ζ6ζ6ζ65ζ65    linear of order 6
ρ722022-1-1-12220220000222222000000    orthogonal lifted from S3
ρ8220-1--3-1+-3ζ6ζ65-12220-1--3-1+-30000-1+-3-1--3-1+-3-1--3-1--3-1+-3000000    complex lifted from C3xS3
ρ9220-1+-3-1--3ζ65ζ6-12220-1+-3-1--30000-1--3-1+-3-1--3-1+-3-1+-3-1--3000000    complex lifted from C3xS3
ρ1033133000-1-1-113311-1-1-1-1-1-1-1-111-1-1-1-1    orthogonal lifted from S4
ρ1133-133000-1-1-1-133-1-111-1-1-1-1-1-1-1-11111    orthogonal lifted from S4
ρ1233-1-3+3-3/2-3-3-3/2000-1-1-1-1-3+3-3/2-3-3-3/2ζ65ζ611ζ6ζ65ζ6ζ65ζ65ζ6ζ65ζ6ζ32ζ32ζ3ζ3    complex lifted from C3xS4
ρ1333-1-3-3-3/2-3+3-3/2000-1-1-1-1-3-3-3/2-3+3-3/2ζ6ζ6511ζ65ζ6ζ65ζ6ζ6ζ65ζ6ζ65ζ3ζ3ζ32ζ32    complex lifted from C3xS4
ρ14331-3+3-3/2-3-3-3/2000-1-1-11-3+3-3/2-3-3-3/2ζ3ζ32-1-1ζ6ζ65ζ6ζ65ζ65ζ6ζ3ζ32ζ6ζ6ζ65ζ65    complex lifted from C3xS4
ρ15331-3-3-3/2-3+3-3/2000-1-1-11-3-3-3/2-3+3-3/2ζ32ζ3-1-1ζ65ζ6ζ65ζ6ζ6ζ65ζ32ζ3ζ65ζ65ζ6ζ6    complex lifted from C3xS4
ρ163-1133000-1+2i-1-2i1-1-1-111-ii-1+2i-1+2i-1-2i-1-2i11-1-1i-ii-i    complex lifted from C42:S3
ρ173-1133000-1-2i-1+2i1-1-1-111i-i-1-2i-1-2i-1+2i-1+2i11-1-1-ii-ii    complex lifted from C42:S3
ρ183-1-133000-1+2i-1-2i11-1-1-1-1i-i-1+2i-1+2i-1-2i-1-2i1111-ii-ii    complex lifted from C42:S3
ρ193-1-133000-1-2i-1+2i11-1-1-1-1-ii-1-2i-1-2i-1+2i-1+2i1111i-ii-i    complex lifted from C42:S3
ρ203-11-3-3-3/2-3+3-3/2000-1-2i-1+2i1-1ζ6ζ65ζ32ζ3i-i43ζ3343ζ32324ζ334ζ3232ζ32ζ3ζ6ζ65ζ43ζ3ζ4ζ3ζ43ζ32ζ4ζ32    complex faithful
ρ213-1-1-3+3-3/2-3-3-3/2000-1+2i-1-2i11ζ65ζ6ζ65ζ6i-i4ζ32324ζ3343ζ323243ζ33ζ3ζ32ζ3ζ32ζ43ζ32ζ4ζ32ζ43ζ3ζ4ζ3    complex faithful
ρ223-1-1-3-3-3/2-3+3-3/2000-1+2i-1-2i11ζ6ζ65ζ6ζ65i-i4ζ334ζ323243ζ3343ζ3232ζ32ζ3ζ32ζ3ζ43ζ3ζ4ζ3ζ43ζ32ζ4ζ32    complex faithful
ρ233-11-3+3-3/2-3-3-3/2000-1-2i-1+2i1-1ζ65ζ6ζ3ζ32i-i43ζ323243ζ334ζ32324ζ33ζ3ζ32ζ65ζ6ζ43ζ32ζ4ζ32ζ43ζ3ζ4ζ3    complex faithful
ρ243-11-3-3-3/2-3+3-3/2000-1+2i-1-2i1-1ζ6ζ65ζ32ζ3-ii4ζ334ζ323243ζ3343ζ3232ζ32ζ3ζ6ζ65ζ4ζ3ζ43ζ3ζ4ζ32ζ43ζ32    complex faithful
ρ253-11-3+3-3/2-3-3-3/2000-1+2i-1-2i1-1ζ65ζ6ζ3ζ32-ii4ζ32324ζ3343ζ323243ζ33ζ3ζ32ζ65ζ6ζ4ζ32ζ43ζ32ζ4ζ3ζ43ζ3    complex faithful
ρ263-1-1-3+3-3/2-3-3-3/2000-1-2i-1+2i11ζ65ζ6ζ65ζ6-ii43ζ323243ζ334ζ32324ζ33ζ3ζ32ζ3ζ32ζ4ζ32ζ43ζ32ζ4ζ3ζ43ζ3    complex faithful
ρ273-1-1-3-3-3/2-3+3-3/2000-1-2i-1+2i11ζ6ζ65ζ6ζ65-ii43ζ3343ζ32324ζ334ζ3232ζ32ζ3ζ32ζ3ζ4ζ3ζ43ζ3ζ4ζ32ζ43ζ32    complex faithful
ρ286-206600022-20-2-200002222-2-2000000    orthogonal lifted from C42:S3
ρ296-20-3+3-3-3-3-300022-201--31+-30000-1--3-1+-3-1--3-1+-31--31+-3000000    complex faithful
ρ306-20-3-3-3-3+3-300022-201+-31--30000-1+-3-1--3-1+-3-1--31+-31--3000000    complex faithful

Smallest permutation representation of C3xC42:S3
On 36 points
Generators in S36
(1 9 2)(3 6 11)(4 8 5)(7 10 12)(13 32 24)(14 29 21)(15 30 22)(16 31 23)(17 26 34)(18 27 35)(19 28 36)(20 25 33)
(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
(1 6 7 5)(2 3 12 8)(4 9 11 10)(13 16 15 14)(21 24 23 22)(29 32 31 30)
(1 32 28)(2 13 19)(3 14 18)(4 23 33)(5 31 25)(6 29 27)(7 30 26)(8 16 20)(9 24 36)(10 22 34)(11 21 35)(12 15 17)
(1 25)(2 20)(3 17)(4 36)(5 28)(6 26)(7 27)(8 19)(9 33)(10 35)(11 34)(12 18)(13 16)(14 15)(21 22)(23 24)(29 30)(31 32)

G:=sub<Sym(36)| (1,9,2)(3,6,11)(4,8,5)(7,10,12)(13,32,24)(14,29,21)(15,30,22)(16,31,23)(17,26,34)(18,27,35)(19,28,36)(20,25,33), (13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,6,7,5)(2,3,12,8)(4,9,11,10)(13,16,15,14)(21,24,23,22)(29,32,31,30), (1,32,28)(2,13,19)(3,14,18)(4,23,33)(5,31,25)(6,29,27)(7,30,26)(8,16,20)(9,24,36)(10,22,34)(11,21,35)(12,15,17), (1,25)(2,20)(3,17)(4,36)(5,28)(6,26)(7,27)(8,19)(9,33)(10,35)(11,34)(12,18)(13,16)(14,15)(21,22)(23,24)(29,30)(31,32)>;

G:=Group( (1,9,2)(3,6,11)(4,8,5)(7,10,12)(13,32,24)(14,29,21)(15,30,22)(16,31,23)(17,26,34)(18,27,35)(19,28,36)(20,25,33), (13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,6,7,5)(2,3,12,8)(4,9,11,10)(13,16,15,14)(21,24,23,22)(29,32,31,30), (1,32,28)(2,13,19)(3,14,18)(4,23,33)(5,31,25)(6,29,27)(7,30,26)(8,16,20)(9,24,36)(10,22,34)(11,21,35)(12,15,17), (1,25)(2,20)(3,17)(4,36)(5,28)(6,26)(7,27)(8,19)(9,33)(10,35)(11,34)(12,18)(13,16)(14,15)(21,22)(23,24)(29,30)(31,32) );

G=PermutationGroup([[(1,9,2),(3,6,11),(4,8,5),(7,10,12),(13,32,24),(14,29,21),(15,30,22),(16,31,23),(17,26,34),(18,27,35),(19,28,36),(20,25,33)], [(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)], [(1,6,7,5),(2,3,12,8),(4,9,11,10),(13,16,15,14),(21,24,23,22),(29,32,31,30)], [(1,32,28),(2,13,19),(3,14,18),(4,23,33),(5,31,25),(6,29,27),(7,30,26),(8,16,20),(9,24,36),(10,22,34),(11,21,35),(12,15,17)], [(1,25),(2,20),(3,17),(4,36),(5,28),(6,26),(7,27),(8,19),(9,33),(10,35),(11,34),(12,18),(13,16),(14,15),(21,22),(23,24),(29,30),(31,32)]])

Matrix representation of C3xC42:S3 in GL3(F13) generated by

300
030
003
,
500
050
0012
,
500
0120
005
,
009
900
090
,
1200
0010
040
G:=sub<GL(3,GF(13))| [3,0,0,0,3,0,0,0,3],[5,0,0,0,5,0,0,0,12],[5,0,0,0,12,0,0,0,5],[0,9,0,0,0,9,9,0,0],[12,0,0,0,0,4,0,10,0] >;

C3xC42:S3 in GAP, Magma, Sage, TeX

C_3\times C_4^2\rtimes S_3
% in TeX

G:=Group("C3xC4^2:S3");
// GroupNames label

G:=SmallGroup(288,397);
// by ID

G=gap.SmallGroup(288,397);
# by ID

G:=PCGroup([7,-2,-3,-3,-2,2,-2,2,254,1011,185,360,634,1173,102,9077,1027,1784]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^4=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=e*b*e=c,d*c*d^-1=b^-1*c^-1,e*c*e=b,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of C3xC42:S3 in TeX
Character table of C3xC42:S3 in TeX

׿
x
:
Z
F
o
wr
Q
<